If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y-164=0
a = 1; b = -2; c = -164;
Δ = b2-4ac
Δ = -22-4·1·(-164)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{165}}{2*1}=\frac{2-2\sqrt{165}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{165}}{2*1}=\frac{2+2\sqrt{165}}{2} $
| 1/2(4y-10)=22 | | -(2-8n)-4(3n-7)=4n+5n | | -6x+11=19 | | (1/w−3)−(3/5w−15)=(2/5w−15) | | 1.33k-5=0.25k-1 | | 4x-2(1-x)=(3x-2) | | 1000=(1000*1.01^x)-(1000*1.01^(x-1)) | | 0.25(q+2)=2.81 | | 1/3y+10=12 | | 14=-4p+2 | | 2x+8+4x+10=180 | | 2x+6=1x-15 | | 2a-3(2/3a+7)=10 | | -6p+8p=16+1p | | 3x+5-x=2(x+3) | | 4w-1-1=4w-3 | | 3y=-99 | | 3x-5=2x-12 | | 71/4-n=25/8 | | 16x-10=-13 | | 7=25x | | (2x-3)(3x+1/2)=0 | | 4+n+2=20+2n | | 19/8+n=29/4 | | 2x-3+x=36 | | b+b+b=21 | | 20x+5+9×-2=40 | | 49/w=7 | | X+x+x+x-30+x-30+x-30=540 | | 2.36+.5h=4.36 | | 4(3+2x)-x=6+7(x+2) | | 11x/6=44 |